sin(2x) = 2*sin(x)*cos(x)
cos(2x) = cos2(x) - sin2(x)
-> 2*sin(x)*cos(x) + cos2(x) - sin2(x) = 1 | - cos2(x)
-> 2*sin(x)*cos(x) - sin2(x) = 1 - cos2(x)
Mit cos2(x) + sin2(x) = 1 folgt 2*sin(x)*cos(x) - sin2(x) = sin2(x) | - sin2(x)
2*sin(x)*cos(x) - 2*sin2(x) = 0
2*sin(x)*(cos(x) - 1) = 0
-> 2*sin(x) = 0 oder cos(x) - 1 = 0
-> 2*sin(x) = 0 <> sin(x) = 0 -> x1 = k*π für k ∈ Z
und cos(x) - 1 = 0 <> cos(x) = 1 -> x2 = 2k*π für k ∈ Z