0 Daumen
3,2k Aufrufe
Trigonometrische Funktionen:

Was bedeutet diese allgemeine Aufstellung?:

Amplitude + sin (Frequenz + x + Phase)

Was bedeuten die Wörter: Amplitude/ Frequenz / Phase?
Bitte allgemein erklären

Wie löse ich diese Gleichung nach x auf?

 2sin (x/2) = 3cos (x)


!
Avatar von

1 Antwort

0 Daumen

bzgl. Amplitude siehe hier

Bild Mathematik

Quelle: http://193.197.131.9:4242/akustische_grundlagen/


Normalerweise hat man folgende schreibweise \( A\cdot sin(\omega t + \phi) \) mit
A = Amplitude
\(\omega\) = Kreisfrequenz
\(\phi\) = Phase

Die Gleichung löst man wie folgt

Es gilt \( sin\frac{x}{2}=\sqrt{ \frac{1-cos(x)}{2} } \)

Setzte z=cos(x) dann muss man folgende Gleichung lösen $$ 2\sqrt{ \frac{1-z}{2}}=3z $$ und die Lösung ist \( \frac{1}{9}\pm \frac{\sqrt{19}}{9} \).

Von diesem Wert den arccos bilden ergibt die Lösung.

Avatar von 39 k
Müsste es nicht heißen: sin x = Wurzel 1-cos^2(x) ?
Hi, Du brauchst aber eine Formel für sin(x/2) und nicht für sin(x). Zumindest hast Du das in Deiner Aufgabe so rein geschrieben.

Für sin(x/2) siehe hier

https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community