betrachte die \(N\)-ten Partialsummen$$\sum_{n=2}^N\frac{\log\left(1+\frac1n\right)}{\log n\log(n+1)}=\sum_{n=2}^N\frac{\log(n+1)-\log n}{\log n\log(n+1)}$$$$=\sum_{n=2}^N\left(\frac1{\log n}-\frac1{\log(n+1)}\right)=\frac1{\log 2}-\frac1{\log(N+1)}.$$Bilde nun den Grenzwert.