f(a, b) = (a + 2·b)·LN(a^2 + b^2)
f(0, 1) = (0 + 2·1)·LN(0^2 + 1^2) = 0
fa'(a, b) = LN(a^2 + b^2) + 2·a·(a + 2·b)/(a^2 + b^2)
fa'(0, 1) = LN(0^2 + 1^2) + 2·0·(0 + 2·1)/(0^2 + 1^2) = 0
fb'(a, b) = 2·LN(a^2 + b^2) + 2·b·(a + 2·b)/(a^2 + b^2)
fb'(0, 1) = 2·LN(0^2 + 1^2) + 2·1·(0 + 2·1)/(0^2 + 1^2) = 4
t(x) = 0 + 0*(a - 0) + 4*(b - 1) = 4·b - 4