Antwort mit KI erzeugt
Der optimierte Wert meines Optimierungsalgorithmus macht keinen Sinn (Matlab)
Es scheint, als ob du beim Versuch, einen Parameter durch die Approximation einer nichtlinearen Funktion mittels einer linearen Funktion zu bestimmen, auf Schwierigkeiten gestoßen bist. Dein Anliegen bezüglich der Einrichtung einer unteren Schranke für den zu optimierenden Parameter ist verständlich, besonders wenn der Algorithmus Werte liefert, die weit außerhalb eines sinnvollen Bereichs liegen.
Einbau einer unteren Schranke
Die direkte Implementierung einer unteren (oder oberen) Grenze in den Optimierungsalgorithmus könnte tatsächlich die Ergebnisse verzerren, insbesondere bei lokalen Optimierungsmethoden wie dem Levenberg-Marquardt-Algorithmus. Bei solchen Methoden wird angenommen, dass alle möglichen Lösungen innerhalb des gesamten Parameterbereichs liegen können. Das willkürliche Zuschneiden oder Begrenzen von Werten kann die Konvergenz des Algorithmus stören oder zu einer Lösung führen, die nicht dem tatsächlichen globalen (oder einem sinnvollen lokalen) Minimum entspricht.
Behebung des eigentlichen Problems
Dein Nachtrag deutet darauf hin, dass das Problem möglicherweise in der Art und Weise liegt, wie du den Fehler berechnest, und das ist ein sehr guter Ansatzpunkt. Die Verwendung von \(r = r'*r\) bzw. \(\text{err} = \text{dot}(d, d)\) berechnet den quadratischen Fehler, was eine gängige Praxis ist. Allerdings hängt die geeignete Wahl der Fehlermetrik stark von deiner spezifischen Anwendung und den Charakteristiken deiner Daten bzw. Funktion ab.
Hier einige Punkte, die du beachten solltest:
-
Fehlermetrik: Verschiedene Problemstellungen benötigen unterschiedliche Fehlermetriken. Der quadratische Fehler funktioniert gut, wenn alle Fehler gleichgerichtet sind und große Abweichungen stärker bestraft werden sollen. In Fällen, wo Ausreißer vorhanden sind oder die Fehlerverteilung nicht uniform ist, könnten andere Metriken (z.B. absoluter Fehler oder Huber-Loss) besser geeignet sein.
-
Skalierung der Parameter: Eine weitere häufige Fehlerquelle kann die Skalierung der Parameter sein. Stelle sicher, dass die Parameter, die du optimierst, ähnliche Größenordnungen haben, um numerische Probleme zu vermeiden.
-
Initialisierung der Parameter: Die Wahl des Startpunkts (hier
a0
und
b0
) kann die Konvergenz des Algorithmus erheblich beeinflussen. Eine gründliche Untersuchung der Anfangsbedingungen kann notwendig sein, um sicherzustellen, dass der Algorithmus in einem sinnvollen Bereich des Parameterraums startet.
Bezüglich der unteren Schranke
Wenn du dennoch entscheidest, eine untere Schranke für deinen Parameter einzuführen, solltest du in Betracht ziehen, dies als einen "sanften" Constraint zu implementieren, anstatt Werte abzuschneiden. Eine Möglichkeit wäre die Verwendung einer Straffunktion, die zum Gesamtfehler hinzugefügt wird, wenn der Parameter unter die gewünschte Schranke fällt. Diese Methode verfälscht die Optimierung weniger und erlaubt es dem Algorithmus immer noch, in Richtung der Grenze zu konvergieren, ohne sie zu überschreiten.
Schlussfolgerung
Dein intuitiver Ansatz, die Fehlerberechnung zu überdenken, ist korrekt. Untersuche die Charakteristiken deiner spezifischen Anwendung und erwäge die Anpassung oder Wechsel der Fehlermetrik. Achte ebenfalls auf die Skalierung der Parameter und ihre Initialisierung. Für die Einrichtung einer unteren Schranke solltest du eher eine Methode verwenden, die deinen Parameterraum nicht unnatürlich einschränkt.