0 Daumen
351 Aufrufe

Hallo :)

Hier die Aufgabe:

fa (x)= 1/6 x^3 -x^2 + ax + 2

Berechnen Sie a so dass die Tangente an der Stelle x=-1 parallel zur Winkelhalbieremden des 1. Und 3. Quadranten verläuft.

Ermitteln Sie alle Stellen an denen die Funktionen fo die Steigung 2 hat.

Zeigen Sie dass sich alle Funktionsgraphen auf der y Achse im selben Punkt schneiden und ermitteln Sie allgemeim die Gleichung der Tangente an diesem Punkt.

Ich möchte wieder ein wenig vorarbeiten und brauche dabei eure Hilfe

Ihr müsst es nicht vorrechnen mir reicht es wenn ich weiß was ich rechnen muss.Der Text ist mit Handy erfasst bitte um Verzeihung für Kommafehler

LG

Simon

Avatar von 3,5 k

1 Antwort

0 Daumen

fa (x)= 1/6 x3 -x2 + ax + 2

Berechnen Sie a so dass die Tangente an der Stelle x=-1
parallel zur Winkelhalbieremden des 1. Und 3. Quadranten verläuft.

Die Winkelhalbierende hat die Steigung 45 ° oder m = 1 .
Vorgehensweise : erste Ableitung bilden
x = -1 einsetzen. 1.Ableitung soll 1 betragen.

Ermitteln Sie alle Stellen an denen die Funktionen fo die Steigung 2 hat.
erste Ableitung = 2 setzen.
Dann sind noch 2 Variable vorhanden : x und a
Die Abhängigkeit beider darstellen : x = f ( a ) oder a = f ( x )

Zeigen Sie dass sich alle Funktionsgraphen auf der y Achse im selben
Punkt schneiden und ermitteln Sie allgemeim die Gleichung der Tangente
an diesem Punkt.

fa1 ( 0 ) = fa2 ( 0 )
f ´( 0 ) = term = Steigung
Ich vermute du kannst die Tangentenformel aufstellen.

Da ich nicht alles berechnet habe können auch Fehler vorhanden sein.

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community