Die Weibchen einer Population legen jedes Frühjahr jeweils 100 Eier(E). Woraufhin diese Weibchen sterben. Aus den Eier schlüpfen mehr oder weniger unmittelbar Larven(L). Innerhalb eines Jahres nimmt der Larvenbestand aufgrund verschiedener Umwelteinflüsse ab. Ein Jahr mach dem Schlüpfen verpuppen sich die Larven(P). Wiederum ein Jahr später entwickeln wich aus den Pumpen Insektenweiblich(W). Die relativ bald danach jeweils 100 Eier legen. Der Graph in der Abbildung gibt die Übergänge zwischen den einzelnen Entwicklungsstadien der Insekten von Jahr zu Jahr an. ( mit c>0)
A) Ergänze die Werte der Übergangsmatrix
B) Eine aus r Eier,s Larven, t Pumpen und u Weibchen bestehende Population ist stabil. Dabei sind r,s,t und u natürliche Zahlen. Bestimmen Sie die kleinstmöglichen Werte vorn,s,t und u sowie für diesen Fall den Wert von c.
\( \begin{pmatrix} 0 & 0 & \underline{ \quad } & 100 \\ 0,3 & \underline{ \quad } & 0 & 0 \\ 0 & 0,2 & 0 & \underline{ \quad } \\ \underline{ \quad } & 0 & e & 0 \end{pmatrix} \)