0 Daumen
293 Aufrufe

Was bedeutet das überstrichene A bei einer Menge? Es heißt ja nicht (¬A).

Eine Aufgabe, wo dieses A vorkommt:

Seien \( M \) eine Menge und \( \mathcal{A} \subseteq \mathcal{P}(M) \) mit \( \mathcal{A} \neq \emptyset \). Zeigen Sie, dass gilt: \( \overline{\cap \mathcal{A}}=\cup\{\bar{A} \mid A \in \mathcal{A}\} \). Sie dürfen ohne Beweis die folgende logische Äquivalenz verwenden: \( \exists y: y=f(x) \wedge E(y) \Longleftrightarrow E(f(x)) \), wobei \( E(y) \) eine prädikatenlogische Formel, \( x \) eine in \( E \) nicht freie Variable und \( f \) eine Funktion (oder Operation) ist.
Avatar von

1 Antwort

0 Daumen

Das nennt man Komplement / Komplementärmenge.

Das Komplement einer Menge A ⊂ M ist "M \ A". Lies "M ohne A".

Avatar von 7,6 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community