Eigenwerte und Eigenvektoren der Matrix bestimmen:
\( \begin{pmatrix} -1 & 1 \\ -4 & 4 \end{pmatrix} \)
Ansatz:
\( det(A - \lambda I) = 0 \)
\( \operatorname{det}\left|\left(\begin{array}{ll}-1 & 1 \\ -4 & 4\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=0 \)
\( \operatorname{det}\left|\left(\begin{array}{cc}-1 & 1 \\ -4 & 4\end{array}\right)-\left(\begin{array}{l} \lambda & 0 \\ 0 & \lambda\end{array}\right)\right|=0 \)
\( \operatorname{det}\left(\left(\begin{array}{c}-1-\lambda \\ -4\end{array} + \begin{array}{c}1 \\ 2-\lambda \end{array} \right) \mid=0\right. \)
\( (-1-\lambda)-(4-\lambda)-(-4)-1=0 \)
\( -4+\lambda-4 \lambda+\lambda^{2}+4=0 \)
\( \lambda^{2}=3 \lambda \)