0 Daumen
386 Aufrufe

Aufgabe:

Consider the following six equation Keynesian model for a closed economy:

Y =F(K,L)

\( \begin{aligned} W / P &=F_{L}=\frac{\partial F(K, L)}{\partial L} \\ C &=C(Y-T, r), \quad 0<\frac{\partial C(Y-T, r)}{\partial Y}<1, \frac{\partial C(Y-T, r)}{\partial r}<0 \\ I &=I(r), \quad \frac{\partial I(r)}{\partial r}<0 \\ Y &=C+I+G \\ \frac{M}{P} &=m(Y, r), \quad \frac{\partial m(Y, r)}{\partial Y}>0, \frac{\partial m(Y, r)}{\partial r}<0 \end{aligned} \)

where the definition of the variables is standard and the production function has the usual properties.

(i) Linearize the equation system and bring it into matrix form.


(Hint: The endogenous variables of the model are Y , L, P , C, I and r. Exogeneous variables are K, T, G, M and W.)

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community