Für \(i \in [1, 8]\) sei \(\pi_i \in \operatorname{Sym}_{12}\) gegeben durch $$\begin{aligned} & \text{\(\pi_1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)\), \(\pi_2 = (1, 2, 3, 4, 5) (6, 7) (8, 9, 10) (11, 12)\),} \\ & \text{\(\pi_3 = (1, 2, 3) (4, 5, 6) (7, 8, 9) (10, 11, 12)\), \(\pi_4 = (1, 2, 3) (4, 5) (6, 7) (8, 9) (10, 11, 12)\),} \\ & \text{\(\pi_5 = (1, 2, 3, 4) (5, 6, 7, 8) (9, 10, 11, 12)\), \(\pi_6 = (1, 2) (3, 4) (5, 6) (7, 8) (9, 10) (11, 12)\),} \\ & \text{\(\pi_7 = (1, 2) (3, 4, 5) (6, 7) (8, 9, 10) (11, 12)\), \(\pi_8 = (1, 2, 3, 4, 5, 6) (7, 8, 9, 10, 11, 12)\).} \end{aligned}$$ Bestimmen Sie die Signen der folgenden Permutationen.
a) \(\pi_5\)
b) \(\pi_8^{- 1}\)
c) \(\pi_7 \pi_4 \pi_7^{- 1}\)
d) \(\pi_5 \pi_6\)
e) \(\pi_6 \pi_2^{- 2} \pi_6^{3} \pi_8^{- 4} \pi_4^3\)