Hallo,
\( y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=3 e^{-2 t}+9 \sin (t)-8 \cos (t) \)
k^2 +6k +9=0
k1,2= -3 (doppelte Lösung)
yh= C1 e^(-3t) +C2 e^(-3t) *t
yp= A e^(-2x) +B sin(t) +C cos(t)
\( y_{p}(t)=3 e^{-2 t}-\frac{59 \cos (t)}{50}+\frac{6 \sin (t)}{25} \)
y=yh+yp