\(x^2-(\frac{1}{k}) \cdot x+k \cdot x-1=0\)
\(x^2+k \cdot x-(\frac{1}{k}) \cdot x=1\)
\(x^2+(k-\frac{1}{k} )\cdot x=1\)
Quadratische Ergänzung:
\(x^2+(\frac{k^2-1}{k})\cdot x+(\frac{k^2-1}{2k})^2=1+(\frac{k^2-1}{2k})^2\)
1.Binom:
\((x+\frac{k^2-1}{2k})^2=\frac{(k^2+1)^2}{4k^2} |±\sqrt{~~}\)
\(1.)\)
\(x+\frac{k^2-1}{2k}=\frac{k^2+1}{2k} \)
\(x_1=-\frac{k^2-1}{2k}+\frac{k^2+1}{2k}=\frac{1-k^2}{2k}+\frac{k^2+1}{2k}=\frac{1}{k} \)
\(2.)\)
\(x+\frac{k^2-1}{2k}=-\frac{k^2+1}{2k} \)
\(x_2=\frac{1-k^2}{2k}-\frac{k^2+1}{2k}=-k \)