Aufgabe:
Für welche \( a \in \mathbb{R} \) hat das folgende lineare Gleichungssystem genau eine Lösung?
\( \left(\begin{array}{ccc} 1 & -1 & 0 \\ 2 & a-1 & 1 \\ 1 & a & -1 \end{array}\right) \cdot\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right) \)
Ansatz/Problem:
Ich habe das Ergebnis a=-1 mit der det(M) berechnet, ich wollte nur wissen, ob es einen besseren/anderen Weg gibt, mit dem ich z.b auch herausfinde für welches a es keine bzw. unendliche Lösungen gibt?
Ich kenne die Bedingungen wann diese Fälle eintreffen, allerdings - wenn ich die Matrix in die Stufenform bringe löscht sich am Ende a weg, und es bleibt:
-2=2 in der letzten Zeile
1 -1 0 | 1
0 a+1 1 | 0
0 a+1 -1 | 2