Hi, ich hätte eine Frage zu folgender Aufgabenstellung:
Es sei V = ℂ2 ein reeller Verträum mit $$\vec { u } =(1,1,3)^{ T },\; \vec { v } =(0,2,1)^{T},\;\vec{w}=(-1,1,1)^T$$
(b) Es sei ein Unterraum von V über die Ebene E mit den Richtungsvektoren v und w gegeben. Gib eine parameterfreie Darstellung der Ebene E an.
Allgemein wäre mir klar was zu tun wäre, das einzige was mich aus dem Konzept bringt ist die Tatsache, dass ich nur 2 Vektoren als Anhaltspunkt gegeben habe. Oder übersehe ich etwas? Soll ich mir den 3 Vektor einfach aussuchen? (Einfach ein nicht zu v und w kollinearer Vektor)