∑2(n+1)k=1 ( (-1)k+1 / k)
= ∑2nk=1 ( (-1)k+1 / k) + ( (-1)2n+1 / (2n+1)) + ( (-1)2n+2 / (2n+2))
= ∑2nk=1 ( (-1)k+1 / k) - 1 / (2n+1) + 1 / (2n+2)
= ∑2nk=1 ( (-1)k+1 / k) - 1 / ( (2n+1)*(2n+2)) jetzt Ind.annahme
= ∑2nk=n+1 1/k - 1 / ( (2n+1)*(2n+2))
= 1/(n+1) + ∑2nk=n+2 1/k - 1 / ( (2n+1)*(2n+2))
= ∑2nk=n+2 1/k + 1/(n+1) - 1 / ( (2n+1)*(2n+2))
= ∑2nk=n+2 1/k + ( 4n+1) / ( (2n+1)*(2n+2))
= ∑2nk=n+2 1/k + 1/ (2n+1) + 1 / ( 2n+2)
= ∑2(n+1)k=n+2 1/k Bingo! Das sollte herauskommen.