4/(x+1) = 1/(2x-5)
Definitionsbereich?
Man darf nicht durch 0 dividieren. Daher sind x= -1 und x = 2.5 verboten.
D = { x∈ℝ | x ≠ -1 und x≠2.5 }
4/(x+1) = 1/(2x-5) |*(x+1)(2x-5)
4(2x-5) = x+1
8x - 20 = x + 1
7x = 21
x = 3. Da 3 in D liegt, sollte 3 effektiv die Lösung deiner Gleichung sein.
Kontrolle : Einsetzen:
4/(3+1) = 4/4 = 1
1/(2*3-5) = 1/(6-5) = 1/1 = 1 . Beide gleich ===> x=3 stimmt.