2·x/(x^4 - 1)
2·x/((x + 1)·(x - 1)·(x^2 + 1)) = a/(x + 1) + b/(x - 1) + (cx+d)/(x^2 + 1)
2·x = a·(x - 1)·(x^2 + 1) + b·(x + 1)·(x^2 + 1) + (c·x + d)·(x + 1)·(x - 1)
x = 1 --> 2·1 = b·(1 + 1)·(1^2 + 1) --> b = 0.5
x = -1 --> 2·(-1) = a·((-1) - 1)·((-1)^2 + 1) --> a = 0.5
x = 0 --> 2·0 = 0.5·(0 - 1)·(0^2 + 1) + 0.5·(0 + 1)·(0^2 + 1) + (c·0 + d)·(0 + 1)·(0 - 1) --> d = 0
x = 2 --> 2·2 = 0.5·(2 - 1)·(2^2 + 1) + 0.5·(2 + 1)·(2^2 + 1) + (c·2 + 0)·(2 + 1)·(2 - 1) --> c = -1
2·x/(x^4 - 1) = 0.5/(x + 1) + 0.5/(x - 1) - 1·x/(x^2 + 1)
Den letzten Bruch könnte man jetzt auch noch Zerlegen.
2·x/(x^4 - 1) = 0.5/(x + 1) + 0.5/(x - 1) - 1·x/((x + i)·(x - i))