(z+√3)3=-1
-1 = e^{iπ + 2kπ}
(z+√3)3=-1 | ^{1/3}
z_(k) + √3 = e^{i(π/3 + 2kπ/3)}
z_(k) = - √3 + e^{i(π/3 + 2kπ/3)}
z_(1) = - √3 + e^{iπ/3} = 1/2-(1-i/2) √(3)
z_(2) = - √3 + e^{i(π/3 + 2π/3)} = -√3 + e^{iπ} = -√3 - 1
z_(3) = - √3 + e^{i(π/3 + 4π/3)} =
- √3 + e^{i(5π/3)} = 1/2-(i√3)/2