Aufgabe:
Für \( \alpha, \beta, s, t \in \mathbb{R} \) seien die Familien
\( B:=\left(b_{1}, b_{2}\right):=\left(\left(\begin{array}{c} -1 \\ s \end{array}\right)_{E_{2}},\left(\begin{array}{c} t \\ -s \end{array}\right)_{E_{2}}\right) \)
und
\( C:=\left(c_{1}, c_{2}, c_{3}\right):=\left(\left(\begin{array}{c} 1 \\ 2 \\ \alpha \end{array}\right)_{E_{3}},\left(\begin{array}{c} -1 \\ \beta \\ 0 \end{array}\right)_{E_{3}},\left(\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right)_{E_{3}} \right) \)
gegeben, wobei \( E_{2} \) bzw. \( E_{3} \) die kanonischen Basen von \( \mathbb{R}^{2} \) und \( \mathbb{R}^{3} \) sind.
a) Zeigen Sie, dass \( B \) genau dann eine Basis von \( \mathbb{R}^{2} \) ist, wenn \( s \neq 0 \) und \( t \neq 1 \).
b) Zeigen Sie, dass \( C \) genau dann eine Basis von \( \mathbb{R}^{3} \) ist, wenn dann \( \alpha \neq 0 \) und \( \beta \neq 0 \).
c) Für \( t=2 \) und \( s=1 \) sei \( T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \) die eindeutige lineare Abbildung derart, dass \( T\left(b_{i}\right)=c_{i} \) für \( i=1,2 . \) Bestimmen Sie, \( q_{1}, \ldots, q_{6} \in \mathbb{R} \) so, dass
\( T\left(\begin{array}{l} x_{1} \\ x_{2} \end{array}\right)_{E_{2}}=\left(\begin{array}{l} q_{1} x_{1}+q_{2} x_{2} \\ q_{3} x_{1}+q_{4} x_{2} \\ q_{5} x_{1}+q_{6} x_{2} \end{array}\right)_{E_{3}} \quad \forall\left(\begin{array}{l} x_{1} \\ x_{2} \end{array}\right)_{E_{2}} \in \mathbb{R}^{2} \)
d) Es sei weiterhin \( s=1, t=2 \). Für welche \( \alpha, \beta \in \mathbb{R} \) ist \( T \) injektiv?
e) Für \( \alpha=\beta=1 \) sei \( S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \) die eindeutige lineare Abbildung so, dass
\( S\left(\begin{array}{l} v_{1} \\ v_{2} \\ v_{3} \end{array}\right)_{C}:=\left(\begin{array}{c} v_{1}-2 v_{2} \\ v_{3} \end{array}\right)_{B} \)
Bestimmen Sie \( p_{1}, \ldots, p_{6} \in \mathbb{R} \) so, dass
\( S\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)_{E_{3}}=\left(\begin{array}{l} p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \\ p_{4} x_{1}+p_{5} x_{2}+p_{6} x_{3} \end{array}\right)_{E_{2}} \quad \forall\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)_{E_{3}} \in \mathbb{R}^{3} \)
f) Es sei weiterhin \( \alpha=\beta=1 \). Für welche \( s, t \in \mathbb{R} \) ist \( S \) surjektiv?
Ansatz/Problem:
Also zu a) und b): Soll ich die Äquivalenz zeigen oder eher einsetzen und dann zeigen oder Beweisen? Da stehe ich momentan total auf den Schlauch.
Zu c): ist klar
Zu d): Ich würde das ganze mit dem Kern(T) zeigen, dass der {0} ist (natürlich α und β natürlich dementsprechend wählen) und durch einen Satz folgern, dass T injektiv ist.
Zu e): Müsste wie c) gehen.
Zu f): Da habe ich keine Ahnung. Ein Ansatz wäre toll
Ich bitte um Feedback, wenn ich die Aufgaben so nicht bearbeiten könnte.