Hallo ich bereite mich grade auf eine Klausur vor und rechne ein paar Übungsaufgaben. Ich soll prüfen, ob die Reihe: ∑k=1 n=∞ 1/(n+1)! konvergiert oder divergiert. Ich habe es bereits mit dem Minoranten und dem Quotienten-Kriterium versucht, aber bin nicht auf Ergebnisse gekommen, die mir weiterhelfen.
∑ (n = 1 bis ∞) 1/(n + 1)!
Wie ist das mit (n + 1)! >= 2^n ?
Hi,
Beispiel: Quotienten-Kriterium.
$$ \left |\frac{ a_{n+1}}{a_n} \right | = \left | \frac{1}{(n+2)!} \cdot (n+1)! \right | = \frac{1}{n+2} \overset{n \to \infty}{\longrightarrow} 0 $$
Somit konvergiert die Reihe also.
Gruß
Danke, ich bin so blöd. Ich habe den Bruch irgendwie vertauscht und bin dann auf (n+2)!/(n+1)! gekommen und hatte dann am Ende nur noch n+2 stehen und nicht 1/(n+2).
Ok das erklärt was du meintest mit kein Ergebnis :). Kein Thema gerne!
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos