bitte nicht abschrecken lassen. Ich sag das, weil hier ja viele Fragen auf eher mathematisch einfachem Niveau sind und die hier komplizierter aussieht. Das täuscht aber, das ist keine besonders spezielle Frage. Also: Falls jemand hier Mathe studiert (hat) - bitte durchlesen :)
im Buch "Allgemeine Topologie" von Bartsch wird viel mit Filtern gearbeitet. Die werden als nichtleere Teilmenge der Potenzmenge einer nichtleeren Menge X, also \(\varphi\subset\mathcal P(X)\), definiert, wobei gilt:
Die leere Menge ist nicht enthalten, mit zwei Elementen \(A,B\in\varphi\) liegt auch der Durchschnitt \(A\cap B\) im Filter und aus \(A\in\varphi\) und \(A\subset B\) folgt stets \(B\in\varphi\).
Meine Frage zielt auf die letzte Eigenschaft ab und zwar bin ich davon ausgegangen, dass B selbst eine Teilmenge von X ist, d.h, dass letzte Bedingung so lautet:
$$ A\in\varphi\land A\subset B\subset X \Rightarrow B\in\varphi.$$
Nun steht aber sowohl in besagtem Buch als auch auf Wikipedia und einer weiteren Quelle nichts davon, dass B in X enthalten sein muss, was mich insofern etwas irritiert, als die Herren und Frauen Mathematiker beim Definieren in der Regel ja recht penibel sind. Aber \(B\) muss doch ebenfalls \(\subset X\) sein, sonst ergibt das keinen Sinn, oder?
Ferragus