0 Daumen
357 Aufrufe

Es geht um eine simple Gleichungsumstellung bei einer Lagrange-Aufgabe. g(x,y)=3x+xy-y=0

Der Term muss nach y umgestellt werden. Mein Lösungsansatz war einfach nur +y zu rechnen und dann hat man stehen: y=3x+xy

Dies scheint jedoch falsch zu sein, denn in der Lösung steht folgendes: y=-3x/(x-1)

Der Schrägstrich steht für einen Bruchstrich. Wie kommt man auf so eine Umformung?

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

deine Lösung wäre ja keine Umstellung, da du auf beiden Seiten noch die Variable \(y\) hast, nach der umzuformen ist.

Möglicher Lösungsweg:

$$3x+xy-y = 0 |-3x \\ xy -y = -3x \\ y(x-1) = -3x | :(x-1) \\ y = -\frac{3x}{x-1}$$

Gruß

Avatar von 23 k
Danke für die schnelle Antwort. Ich verstehe hedoch den Schritt in der dritten Zeile nicht, warum man das x plötzlich in eine Klammer setzt und zusätzlich noch eine -1 dazuschreibt. Wo kommt diese -1 plötzlich her?

Das ist ganz elementar und nennt sich ausklammern. Man verwendet das Distributivgesetz.

$$ x\cdot y - y = y \cdot x  - y \cdot 1 = y \cdot (x-1) $$

Bitte Grundlagen aufarbeiten :).

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community