Zu zeigen
∑((-1)^{k - 1}·1/k, k, 1, 2·n) = ∑(1/k, k, n + 1, 2·n)
Induktionsschritt n --> n + 1
∑((-1)^{k - 1}·1/k, k, 1, 2·(n + 1)) = ∑(1/k, k, (n + 1) + 1, 2·(n + 1))
∑((-1)^{k - 1}·1/k, k, 1, 2·n + 2) = ∑(1/k, k, n + 2, 2·n + 2)
∑((-1)^{k - 1}·1/k, k, 1, 2·n) + (-1)^{[2·n + 1] - 1}·1/(2·n + 1) + (-1)^{[2·n + 2] - 1}·1/(2·n + 2) = ∑(1/k, k, n + 1, 2·n) - 1/(n + 1) + 1/(2·n + 1) + 1/(2·n + 2)
(-1)^{[2·n + 1] - 1}·1/(2·n + 1) + (-1)^{[2·n + 2] - 1}·1/(2·n + 2) = - 1/(n + 1) + 1/(2·n + 1) + 1/(2·n + 2)
1/(2·n + 1) - 1/(2·n + 2) = - 1/(n + 1) + 1/(2·n + 1) + 1/(2·n + 2)
1/(2·n + 1) - 1/(2·n + 2) = - 2/(2·n + 2) + 1/(2·n + 1) + 1/(2·n + 2)
1/(2·n + 1) - 1/(2·n + 2) = 1/(2·n + 1) - 1/(2·n + 2)
wzbw.