\( g(x) \) und \( g'(x) \) hast du richtig identifiziert. \( f(x) \) fehlt noch. In deiner Aufgabe ist \( f(x)=x^3 \). Jetzt eigentlich nur noch einsetzen:
\(\begin{aligned} \int_{0}^{\frac{\pi}{2}}(\cos x)^{3}\cdot(-\sin x)dx & =\int_{\cos0}^{\cos\frac{\pi}{2}}z^{3}dz\\ & =\left[\frac{1}{4}z^{4}\right]_{\cos0}^{\cos\frac{\pi}{2}}\\ & =\frac{1}{4}\left(\cos\frac{\pi}{2}\right)^{4}-\frac{1}{4}\left(\cos0\right)^{4}\\ & =\frac{1}{4}\cdot0^{4}-\frac{1}{4}1^{4}\\ & =-\frac{1}{4} \end{aligned}\)
Und erinnere dich an die Kettenregel; daher kommt die Substiturionsregel.