a)
\(\lim_{x \to 1}\) \(\frac{f(x)-f(1)}{x-1}\)
= \(\lim_{x \to 1}\) [ x2 - 2 - (-1) ] / (x - 1)
= \(\lim_{x \to 1}\) (x2 - 1) / (x - 1)
= \(\lim_{x \to 1}\) [ (x - 1) • (x+1) ] / (x - 1)
= \(\lim_{x \to 1}\) (x+1) = 2
c)
\(\lim_{x \to -2}\) \(\frac{f(x)-f(-2)}{x+2}\)
= \(\lim_{x \to -2}\) [ \(\frac{1}{x+3}\) - \(\frac{1}{-2+3}\) ] / (x+2)
= \(\lim_{x \to -2}\) [ \(\frac{1}{x+3}\) - 1 ] / (x+2)
= \(\lim_{x \to -2}\) [ \(\frac{1 - (x+3)}{x+3}\) ] / (x+2)
= \(\lim_{x \to -2}\) [ \(\frac{ - x - 2}{x+3}\) ] / (x+2)
= \(\lim_{x \to -2}\) [ \(\frac{ - (x + 2)}{x+3}\) ] / (x+2)
= \(\lim_{x \to -2}\) \(\frac{-1}{x+3}\)
= \(\frac{-1}{-2 + 3}\)
= - 1
Gruß Wolfgang