Hallo
a) geht auch prima mit Formel:
- Polynom liegt bereits ohne kubisches Glied vor (nach Division durch x):
x^4 +x^2 +6x +4 = 0
x^4 +a x^2 +b x +c = 0
- Ansatz (x^2 +P)^2 = (Q x +R)^2
P^3 -a/2 P^2 -c P +ac/2 -b^2/8 = 0
P^3 - 1/2 P^2 -4 P +2 -36/8 = 0
(P -1/6)^3 -4 -1/12 (P -1/6) -36/8 -4*1/2/3 -2(1/2/3)^3 = 0
(P -1/6)^3 -49/12 (P -1/6) -343/108 = 0
lineares Glied ist negativ -> cos bzw. cosh benutzen
P1 -1/6 = 2 * (49/12/3)^0.5 * cos 1/3 arccos +(343/108/2) / ((49/12/3)^3)^0.5
P1 -1/6 = 2 * 7/6 * cos 1/3 arccos +(343/216) / (343/216)
P1 = 15/6
x1,2 = -b/|b| * ( -a/4 +P/2 )^0.5 +/- ( -a/4 -P/2 +(P^2 -c)^0.5 )^0.5
x3,4 = +b/|b| * ( -a/4 +P/2 )^0.5 +/- ( -a/4 -P/2 -(P^2 -c)^0.5 )^0.5
x1,2 = -6/|6| * ( -1/4 +15/12 )^0.5 +/- (-1/4 -15/12 +((15/6)^2 -4)^0.5 )^0.5
x1,2 = -6/|6| * ( -3/12 +15/12 )^0.5 +/- (-3/12 -15/12 +(225/36 -144/36)^0.5 )^0.5
x1,2 = - (12/12 )^0.5 +/- (-18/12 +(81/36)^0.5 )^0.5
x1,2 = - (1 )^0.5 +/- (-9/6 +(9/6) )^0.5
x1,2 = - (1 )^0.5 +/- (-9/6 +(9/6) )^0.5
x3,4 = +(1)^0.5 +/- (-9/6 -9/6)^0.5
x1,2 = -1 +/- 0
x3,4 = +1 +/- i * (3^0.5)