0 Daumen
554 Aufrufe

Halo zusammen,


Die Aufgabe lautet:

Bei einer Qualitätskontrolle werden 5% der Bausteine aussortiert.
Die Kontrolle besteht aus zwei Stufen. In der ersten Stufe werden neunmal so viele Bausteine aussortiert, wie in der zweiten. Im kommenden Monat sind insgesamt 140.000 Bausteine geplant.

Wie viele Bausteine werden in der ersten, wie viele in der zweiten Stufe der Qualitätskontrolle aussortiert?
Ermitteln Sie die Wahrscheinlichkeit, dass ein Baustein, der die zweite Stufe durchläuft, aussortiert wird.


Meine Idee war, die 5% insgesamt in 4,5% (erste Stufe) und 0,5% (zweite Stufe) aufteilen. So werden in der ersten neun mal so viele aussortiert wie in der zweiten und zusammen sind es wieder 5%
Also werden in Stufe eins 140 000 * 0,045 = 6300 Stück und
in Stufe zwei: 140 000 * 0,005 = 700 Stück aussortiert.

und für die wahrscheinlichkeit habe ich: 0,955 *0,005 = 0,00478 gerechnet.
Also (1-P(Stufe eins aussortiert: 0,045) )  * P(Stufe zwei aussortiert: 0,005) aber das richtige ergebnis wäre 0,0052

Kann mir jemand sagen was ich falsch rechne? oder wo mein Denkfehler lieg?
Ich komm irgendwie einfach nich darauf...


,
Marius

Avatar von
Ok ich bin selber auf die Lösung gekommen der Ausschul der zweiten Stufe errechnet sich mit:
700/133700 = 0,0052

1 Antwort

0 Daumen

1 * (1 - p) * (1 - q) = 1 - 0.05

1 * p = 9 * 1 * (1 - p) * q

Ich löse das Gleichungssystem: p = 9/200 ∧ q = 1/191

140000 * 9/200 = 6300

140000 * (1 - 9/200) * 1/191 = 700

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community