0 Daumen
292 Aufrufe

Hallo

Kann jemand mal aufschreiben wie er die Kettenregel anwenden würde für:

k(x)=1/(4x+2)

Kann jemadn das malvormachen,möchte gerne wissen wie man das mathematisch aufschreibt mit Formeln etc um die volle Punktzahl zu erreichen bei einer Arbeti..

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort
k ist hier eine Verkettung von zwei Funktionen, nennen wir sie f und g:
$$f\colon\mathbb R\setminus\{0\}\rightarrow\mathbb R\setminus\{0\}\colon x\mapsto\frac1x\\g\colon\mathbb R\rightarrow\mathbb R\colon x\mapsto4x+2$$
Die Ableitung davon ist nach der Kettenregel dann:
$$k'(x)=f'(g(x))\cdot g'(x)=-\frac1{(4x+2)^2}\cdot 4=-\frac4{(4x+2)^2}$$
Wenn du noch genauer sein willst, schreibe f'(x) und g'(x) explizit hin:
$$f'(x)=-\frac1{x^2}\\g'(x)=4.$$
Viel genauer kann man da nicht werden.
Avatar von 1,0 k
0 Daumen

k(x) = 1/(4x+2) = (4x+2)-1

k'(x) = -1·(4x+2)-2·4 = -4/(4x+2)2

Avatar von 107 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community