+1 Daumen
437 Aufrufe

Eine Firma stellt Computerchips mit einer Ausschussquote von 4% her.

Der Produktion werde 100 Chips zu Prüfzwecken entnommen.


a) Bestimme die Wahrscheinlichkeit, dass genau 6 Chips defekt sind und stelle die dazu gehörige Bernoulli - Formulierung auf.

b) Bestimme die Wahrscheinlichkeit, dass mindestens 6 Chips defekt sind,

c) Wie groß muss die Anzahl der zu untersuchenden Chips mindestens sein, damit man mit 95% Wahrscheinlichkeit mindestens 3 defekte Chips findet?

Avatar von

1 Antwort

0 Daumen

Eine Firma stellt Computerchips mit einer Ausschussquote von 4% her.

Der Produktion werde 100 Chips zu Prüfzwecken entnommen.

a) Bestimme die Wahrscheinlichkeit, dass genau 6 Chips defekt sind und stelle die dazu gehörige Bernoulli - Formulierung auf. 

P(X = 6) = (100 über 6)·0.04^6·0.96^{100 - 6} = 0.1052

b) Bestimme die Wahrscheinlichkeit, dass mindestens 6 Chips defekt sind,

P(X >= 6) = ∑ (x = 6 bis 100) ((100 über x)·0.04^x·0.96^{100 - x})

c) Wie groß muss die Anzahl der zu untersuchenden Chips mindestens sein, damit man mit 95% Wahrscheinlichkeit mindestens 3 defekte Chips findet?

1 - (0.96^n + n·0.04^1·0.96^{n - 1} + n·(n - 1)/2·0.04^2·0.96^{n - 2}) = 0.95

Laut Wertetabelle ab 160 Chips.

Avatar von 488 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community