f(x) = 3·x^2 + 2·x + 1
m = (f(x + h) - f(x)) / h
m = ((3·(x + h)^2 + 2·(x + h) + 1) - (3·x^2 + 2·x + 1)) / h
m = ((3·(x^2 + 2·h·x + h^2) + 2·x + 2·h + 1 - 3·x^2 - 2·x - 1) / h
m = (3·x^2 + 6·h·x + 3·h^2 + 2·x + 2·h + 1 - 3·x^2 - 2·x - 1) / h
m = (6·h·x + 3·h^2 + 2·h) / h
m = 6·x + 3·h + 2
für lim h --> 0 folgt
f'(x) = 6·x + 2