Sattelpunkt (0|0) und Wendepunkt W(1|1) 4.Grad
f(x)=a*\( x^{3} \) (x-N)
W(1|1)
f(x)=a(1-N)
1.) a(1-N)=1 a=\( \frac{1}{1-N} \)
f(x)=\( \frac{1}{1-N} \)*[\( x^{3} \)(x-N)]=\( \frac{1}{1-N} \)*[\( x^{4} \)-\( x^{3} \)N]
f´(x)=\( \frac{1}{1-N} \)*[4\( x^{3} \)-3\( x^{2} \)N]
f´´(x)=\( \frac{1}{1-N} \)*[12\( x^{2} \)-6xN]
f´´(1)=\( \frac{1}{1-N} \)*[12-6N]
\( \frac{1}{1-N} \)*[12-6N]=0 N=2 a=-1
f(x)=-\( x^{3} \) (x-2)=-x^4+2x^3