In der Pause spielen die Qualitätskontrolleure gern Bärchenlotterie. Sie stecken 5 grüne und gelbe Gummibärchen in ein blickdichtes Sackerl. Daraus darf dann drei Mal ohne zurücklegen gezogen werden.
a) Berechne die Wahrscheinlichkeit dafür unter den gezogenen drei Bärchen mindestens 2 mit der Farbe grün zu erhalten
b) Ein Mitarbeiter ist der Ansicht man kann die unter a) beschriebene Wahrscheinlichkeit auch mit dem Term $$(\begin{matrix} 3 \\ 2 \end{matrix})\ast (\frac { 1 }{ 4 } )^{ 2 }\ast (\frac { 3 }{ 4 } )^{ 1 }+(\frac { 1 }{ 4 } )^{ 3 }$$ berechnen. Irrt sich der Mitarbeiter oder nicht?