für jeden Kreis gilt: U = 2 • π • r und A = π • r2
Radius kleine Kreisbögen rk = a/4 , Radius große Kreisbögen rg= a
Die beiden kleinen Halbkreise ergeben also zusammen
den Umfanganteil U1 = 2π • a und den Flächenanteil A1 = π • a2 /16
Verbindet man A und D unten mit der Herzspitze S, ergibt sich ein gleichschenkliges Dreieck mit der Seitenlänge a.
→ Die beiden Winkel ADS und SAD haben das Maß 60°
Ihr Umfangsanteil beträgt zusammen
U2 = 2 • 60°/360° • 2 • π • a = 2/3 • π • a
Ihr Flächenanteil beträgt zusammen
A2 = 1/3 • π • a2 - a2/4 • √3 = a2 • ( 1/3 • π - 1/4 • √3 )
(Diese Fläche des gleichseitigen Dreiecks wurde doppelt berechnet und wir deshalb einmal abgezogen.)
Umfang der Figur = U1 + U2 = 2π • a + 2/3 • π • a = 8/3 • π • a [ 32/3 • π • a #]
Fläche der Figur = A1 + A2 = π • a2/16 + a2 • ( 1/3 • π - 1/4 • √3 )
= a2 • ( 19/48 • π - 1/4 • √3 ) [ 4a2 • ( 19/48 • π - 1/4 • √3 ) #]
# Edit:
Habe gerade gesehen, dass a nur die Hälfte von rg beträgt und rk = a/2 ist.
In der gesamten Rechnung und den Ergebnissen muss deshalb a durch 2a ersetzt werden.
Gruß Wolfgang