0 Daumen
774 Aufrufe

a) Zu zeigen: φ = µ * id

id ist die Identität auf ℕ, id(n)=n

Die Multiplikativität der Eulerschen φ-Funktion darf als bekannt vorausgesetzt werden.


Definition φ(n) := # {k, 1≤k≤n : ggT(k,n)=1

Definition µ(n)

$$ µ(n):=\begin{cases} 1 & wenn\quad n=1 \\ { (-1) }^{ r } & wenn\quad { \alpha  }_{ 1 }={ \alpha  }_{ 2 }=...=1 \\ 0 & sonst\quad (d.h.\quad mindestens\quad ein\quad { \alpha  }_{ i }\ge 2) \end{cases} $$


b) Welche Werte nimmt die Zahlentheoretische Funktion µ * τ an?

Definition τ(n) ist die Teileranzahl-Funktion.

$$ \tau (n):=\sum _{ d|n }^{ \quad  }{ 1 } { ( }n∈ℕ) $$

Avatar von

was sind denn die alphas und das r in der Def.

von μ ?   Haben die irgendwas mit der PFZ von n zu tun ??

r ist die Anzahl der Primfaktoren in der PFZ.

αi sind die Exponenten in der PFZ.

1 Antwort

0 Daumen

Irgendwas stimmt da aber nicht:

etwa μ(6) = (-1)^2 = 1    denn 6 = 2*3 also gibt es α1 =  α2 = 1

aber  φ(6) = 2  und   μ(6)* 6 = 6   Widerspruch!

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community