a) ln zur Basis e, log zur Basis 10
$$ ln(x^2)+log(1/2x)<=1 $$
$$2*ln(x)+log(1/2)+log(x)<=1 $$
$$2*ln(x)+ln(x)/ln(10)<=1-log(1/2) $$
$$ (2+1/ln(10))*ln(x)<=1-log(1/2) $$
$$ ln(x)<=[1-log(1/2)]/(2+1/ln(10))$$
$$ x<=exp([1-log(1/2)]/(2+1/ln(10)))=1.7065 $$
Weil der Logarithmus nur für x>0 definiert ist, lautet das Endergebnis:
0<x<=1.7065
b)
$$ ln(2x)+log(1/2x)<=1 $$
$$ ln(2)+ln(x)+ log(1/2)+log(x)<=1$$
$$ ln(x)+ln(x)/ln(10)<=1-ln(2)-log(1/2)$$
$$(1+1/ln(10))*ln(x)<=1-ln(2)-log(1/2) $$
$$ ln(x)<=[1-ln(2)-log(1/2)]/(1+1/ln(10))$$
$$ x<=exp([1-ln(2)-log(1/2)]/(1+1/ln(10)))=1.52778$$
Endergebnis:
0<x<=1.52778