Also log ist wohl zur Basis 10.
Dann gilt log(x) = log(e)*ln(x) also
log(x) + ln (x) < 1
⇔ log(e)*ln(x) + ln (x) < 1
⇔ ln(x) * ( log(e) + 1) < 1
⇔ ln(x) * ( log(e) + log(10) ) < 1
⇔ ln(x) * ( log(10*e) ) < 1
⇔ ln(x) < < 1 / log(10*e) =
⇔ x < e 1 / log(10*e) ≈ 2,008
Also gilt die Ungleichung für alle x < 2,008.