x^4 + 2·x^3 - 7·x^2 - 20·x - 12 = (x + 1)·(x - 3)·(x + 2)^2
x^3 - 3·x^2 - x + 3 = (x + 1)·(x - 1)·(x - 3)
f(x) = (x + 1)·(x - 3)·(x + 2)^2 / ((x + 1)·(x - 1)·(x - 3))
Hebbare Definitionslücke bei x = - 1 und x = 3
fh(x) = (x + 2)^2 / (x - 1) = (x^2 + 4·x + 4) / (x - 1)
Asyptote
(x^2 + 4·x + 4) / (x - 1) = x + 5 + 9/(x - 1) --> p(x) = x + 5
Skizze:
~plot~ (x + 2)^2/(x - 1);x+5;[[-24|24|-16|16]] ~plot~