Wenn ihr die Definition der e.funktion im Komplexen schon hattet, dann ist die Frage relativ einfach. Schreib
$$e^z = e^{x+iy}$$ und benutz den Satz von Euler (auch Euler formel genannt), schreib das in Sinus und Cosinus um. Dann kriegst du einen Widerspruch.
Ohne e-funktion ist das ganze schon etwas schwieriger. Ich würde argumentieren wollen, dass das ganze eine positive monoton steigende Folge beschreibt. Da der erste Wert gerade gleich 1 ist, und die Werte von da nur größer werden, kann der Wert also insb. nicht 0 sein.