an > bn ⇔ √(n+1000) - √n > √(n+n/1000) - √n
⇔ √(n+1000) > √(n+n/1000)
⇔ n+1000 > n+n/1000
⇔ 1000 >n/1000
⇔ 1000000 > n
-------------
lim (√(n+1000) - √n) = lim ( √(n+1000) 2 - √n 2) / (√(n+1000) + √n )
= lim [ (n+1000 - n) / ( √(n+1000) + √n) ]
= lim [ 1000 / ( √(n+1000) + √n ) = 0
------------
lim [√(n+n/1000) - √n] = lim [√( 1001/1000 • n) -√n] = lim [√(1001/1000) • √n - √n]
= lim [ 1/1000 • √n] = ∞
Gruß Wolfgang