0 Daumen
8k Aufrufe

folgende Aufgabe wurde mir gestellt:

Berechnen Sie die Elastizität der Funktion:

y(x) = 7x3+x+3 

für x0 =1

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort
y'(x) = 21 x^2 + 1

=> E_y (x_0) = ( 21 x^2 +1 )/( 7 x^3 + x + 3)


gruss...
Avatar von 4,8 k
Denn die Elaszität von f(x) an der stelle x ist genau das:

f '(x) * x/f(x)

Alles klar? :-)

Müsste man dann nicht noch weiter rechnen?

 E_y (x_0) = ( 21 xo2 +1 )xo/( 7 xo3 + xo + 3) 

 E_y (1) = ( 21 +1 )/( 7  + 1 + 3) = 22/11 = 2

Hallo und vielen Dank schon einmal vorab für die Hilfe. Die Formel verstehe ich, jedoch, wenn ich einsetze kommt doch folgendes heraus:

(21x2+1)*x / (7x3+x+3) 

sprich, wo ist das *x aus der Formel hingekommen? Setzt man hier nun das x0=1, also 1 für das *x ein? Wenn man es dann ausrechnet würde man das o. genannte Ergebnis erhalten. Richtig?

Vielen Dank für eine Information,

Christopher

Ich habe mir soeben ein Video angesehen. Hier wurde stringent der Formel agiert, also:

(21x2+1)*x / (7x3+x+3) => 21x3 + x / (7x3 + x + 3)

Es wurde also der Zähler noch mit dem x multipliziert. Ist das richtig?

Vielen Dank für eine Beantwortung!

Christopher

Nein, in dem Punkt x. Bei dieser Aufgabe also mit x_0 = 1. :)
Kannst du noch bitte die Auszeichnung "Beste Antwort" vergeben, bitte? :-) (immer schön smylies, hahahahha! ;-) )

@Christopher. Du musst rechts noch eine Klammer setzen. Und wie Legen…där schon gesagt hat, nachher noch xo=1 einsetzen. Das kannst du links und rechts vom Pfeil machen.

(21x2+1)*x / (7x3+x+3) => (21x3 + x) / (7x+ x + 3)

Hallo nochmal,

entschuldigt bitte wenn meine Frage nun blöd klingt, jedoch habe ich nun den Überblick verloren. 

Lösung: Legen...Där: Deine Lösung zu der Aufgabe war:

=> E_y (x_0) = ( 21 x2 +1 )/( 7 x3 + x + 3)

Lösung: Lu war:

=> E_y (x_0) = (21x3 + x) / (7x3 + x + 3)

Könnt ihr mir sagen, welche nun richtig ist? Muss ich nun den Zähler mit x multiplizieren oder nicht? 

Die beiden Lösungen verwirren mich leider.

Christopher

PS: Beste Antwort klick ich gerne, alsbald wir eine einvernehmliche Lösung gefunden haben ;-) - Vielen vielen Dank

Lu hat es etwas schöner notiert. Lägendar hat x0 gleich mit 1 ersetzt. Das ist aber ungünstig, wenn man noch Ey(x0) stehen hat.

Ich würde es wie folgt schreiben:

Ef(x) = f'(x) / f(x) * x

Ef(x) = x·(21·x^2 + 1)/(7·x^3 + x + 3)

Ef(1) = 1·(21·1^2 + 1)/(7·1^3 + 1 + 3) = 2

Damit ist die Funktion an der Stelle 1 elastisch.

Toll! Danke nun habe ich es kapiert!

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community