f(x) = ASIN(x·√(2 - x^2))
f'(x) = 1/√(1 - (x·√(2 - x^2))^2) · (1·√(2 - x^2) + x·1/(2·√(2 - x^2))·(- 2·x))
f'(x) = 1/√(1 - x^2·(2 - x^2)) · (√(2 - x^2) - x/(√(2 - x^2))·x)
f'(x) = 1/√(1 - 2·x^2 + x^4) · (√(2 - x^2) - x^2/√(2 - x^2))
f'(x) = 1/√((1 - x^2)^2) · (√(2 - x^2) - x^2/√(2 - x^2))
f'(x) = 1/|1 - x^2| · ((2 - x^2)/√(2 - x^2) - x^2/√(2 - x^2))
f'(x) = 1/|1 - x^2| · ((2 - x^2 - x^2)/√(2 - x^2))
f'(x) = 1/|1 - x^2| · ((2 - 2·x^2)/√(2 - x^2))
f'(x) = 1/|1 - x^2| · (2·(1 - x^2)/√(2 - x^2))
f'(x) = 2·SIGN(1 - x^2)/√(2 - x^2)