Ein Input-Output Modell für Österreich aus dem Jahr 1955 besteht aus den folgenden Wirtschaftszweigen: 1. Unternehmungen, 2. öffentlicher Sektor und 3. Ausland. Der Endverbrauch wird durch die privaten Haushalten verursacht. Die Input-Output Tabelle lautet (in Milliarden Schilling):
Lieferungen | an Sektor 1 | an Sektor 2 | an Sektor 3 | an Endverbrauch |
von Sektor 1 | 130 | 140 | 180 | 550 |
von Sektor 2 | 90 | 190 | 170 | 650 |
von Sektor 3 | 100 | 120 | 160 | 550 |
Die Lieferungen an die Endverbraucher werden folgendermaßen angepasst:
Lieferungen aus Sektor 1 werden um 276.5 Mrd. gesteigert.
Lieferungen aus Sektor 3 werden um 289.5 Mrd. gesteigert.
Wie hoch ist der Output von Sektor 3 nach der Anpassung?
Hinweise: Rechnen Sie mit 4 Nachkommastellen und runden Sie die gesuchten Ergebnisse erst am Ende auf 2 Nachkommastellen. Außerdem benötigen Sie eine der beiden folgenden inversen Matrizen:
(E-A )-1 = ( 0.8700 -0.1273 -0.1935 -0.0900 0.8273 -0.1828 -0.1000 -0.1091 0.8280 )-1 =( 1.2117 0.2305 0.3340 0.1691 1.2772 0.3215 0.1686 0.1961 1.2904 ) (E-A )-1 = ( 0.8700 -0.1400 -0.1800 -0.0818 0.8273 -0.1545 -0.1075 -0.1290 0.8280 )-1 =( 1.2117 0.2535 0.3107 0.1537 1.2771 0.2717 0.1812 0.2319 1.2904 ) |