Hallo ziom,
f1(x) = cos(x) / (x2+1)
Quotientenregel : [ u / v ] ' = ( u ' * v - u * v ' ) / v2
f1' (x) = [ - sin(x) * (x2 + 1 ) - cos(x) * 2x ) ] / (x2 + 1)2
f2(x) = sin( (ln(x) )2 )
Kettenregel (mehrfach) in Kurzform:
[ f(u) ] ' = f '(u) * u '
f2 '(x) = cos( (ln(x) )2 ) * [ (ln(x) )2 ] '
= cos( (ln(x) )2 ) * 2 * ln(x) * [ ln(x) ] '
= cos( (ln(x) )2 ) * 2 * ln(x) * 1/x = 2/x * ln(x) * cos( (ln(x) )2 )
Gruß Wolfgang