G = (41 - 63·p1 + 15·p2)·(p1 - 3) + (78 + 2·p1 - 3·p2)·(p2 - 1)
G = - 63·p1^2 + 17·p1·p2 + 228·p1 - 3·p2^2 + 36·p2 - 201
Gp1' = - 126·p1 + 17·p2 + 228 = 0
Gp2' = 17·p1 - 6·p2 + 36 = 0
Löse das Gleichungssystem und erhalte:
[p1 = 4.239828693 ∧ p2 = 18.01284796]
G = (41 - 63·4.239828693 + 15·18.01284796)·(4.239828693 - 3) + (78 + 2·4.239828693 - 3·18.01284796)·(18.01284796 - 1) = 606.5717344