$$ \lim_{x \to \tilde x} \frac{\sqrt[3]{x} -\sqrt[3]{\tilde x} }{x-\tilde x} = \lim_{x \to \tilde x} \frac{\sqrt[3]{x} -\sqrt[3]{\tilde x} }{(\sqrt[3]{ x} )^3-(\sqrt[3]{\tilde x} )^3} = \lim_{x \to \tilde x} \frac{\sqrt[3]{x} -\sqrt[3]{\tilde x}}{(\sqrt[3]{x} -\sqrt[3]{\tilde x} )((\sqrt[3]{ x} )^2 + \sqrt[3]{x} \cdot \sqrt[3]{\tilde x}+ (\sqrt[3]{\tilde x} )^2)} $$
Was wurde hier gemacht? Die erste Umformung ist klar, aber die weitere Umformung des Nenners verstehe ich nicht...wird der Nenner so nicht größer, während der Zähler gleich bleibt? Was wurde hier verwendet?