Die Aufgabe ist ein wenig seltsam.
Wegen \(a(0) = 1\), \(a(8) = 6\) und \(a(128) = -9\) ist \(a(n)\) sicher nicht monoton. Der offensichtliche Grenzwert \(a=-4\) kann bereits durch Ablesen bestimmt werden und damit muss \(a(n)\) konvergent und beschränkt sein.
Die Frage nach der Stetigkeit finde ich im Zusammenhang mit Zahlenfogen deplatziert und wohldefiniert ist die Folge wegen \(a(32)=?\) auch nicht.
Das händische Ausrechnen der Partialsummen finde ich eher mühselig.
Wo ist die Aufgabe her?