Hallo Rike,
\(A\) und \(B\) seien die Giftmengen in kg in beiden Seen und \(G\) die Summe - also \(G=A+B\). Und \(V_A\) und \(V_B\) das jeweilige Volumen der Seen. Dann ist \(A(t=0)=500\text{kg}\) und \(B(t=0)=0\text{kg}\). \(a=A/V_A\) und \(b=B/V_B\) seien die jeweilige Konzentration in kg/l. Ist der Volumenstrom \(Q=200 \text{l/h}\) dann ist
$$\dot A = -Q \cdot a =- Q \cdot \frac{A}{V_A}$$
$$\dot B = -\dot A - Q \cdot b = Q \cdot \frac{A}{V_A} - Q \cdot \frac{B}{V_B}=Q\left( \frac{A}{V_A} - \frac{B}{V_B} \right)$$
$$\dot G = \dot A + \dot B$$
Falls noch Fragen offen sind, so melde Dich.