Bestimmen Sie den Oberflächeninhalt der dreiseitigen Pyramide mit den Eckpunkten A = [3, 3, 0], B = [1, 1, 4], C = [6, 0, 2] und D = [4, 4, 3]
AB = [1, 1, 4] - [3, 3, 0] = [-2, -2, 4]
AC = [6, 0, 2] - [3, 3, 0] = [3, -3, 2]
AD = [4, 4, 3] - [3, 3, 0] = [1, 1, 3]
BC = [6, 0, 2] - [1, 1, 4] = [5, -1, -2]
BD = [4, 4, 3] - [1, 1, 4] = [3, 3, -1]
Fläche ABC: 1/2·ABS([-2, -2, 4] ⨯ [3, -3, 2]) = 2·√29
Fläche ABD: 1/2·ABS([-2, -2, 4] ⨯ [1, 1, 3]) = 5·√2
Fläche ACD: 1/2·ABS([3, -3, 2] ⨯ [1, 1, 3]) = 1/2·√206
Fläche BCD: 1/2·ABS([5, -1, -2] ⨯ [3, 3, -1]) = 1/2·√374
O = 2·√29 + 5·√2 + 1/2·√206 + 1/2·√374 = 34.69 FE