Aufgabe:
$$ \sum _ { k = 1 } ^ { 5 } \left( \frac { 1 } { k } - \frac { 1 } { k + 1 } \right) $$
Soweit ist das Berechnen kein Problem, ich muss ja nur die Werte von k (1 bis 5) einsetzen und dann alles addieren.
Vielleicht bin ich auch vollkommen auf dem Holzweg aber so habe ich bisher gerechnet:
Für k = 1:
\( \left( \frac { 1 } { 1 } - \frac { 1 } { 1 + 1 } \right) = \frac { 2 } { 2 } - \frac { 1 } { 2 } = \frac { 1 } { 2 } \)
Für k = 2:
\( \left( \frac { 1 } { 2 } - \frac { 1 } { 2 + 1 } \right) = \left( \frac { 1 } { 2 } - \frac { 1 } { 3 } \right) = \left( \frac { 3 } { 6 } - \frac { 2 } { 6 } \right) \)
So habe ich es mit jedem der insgesamt 5 Terme gemacht.
Dann habe ich zum Schluss:
\( \frac { 1 } { 2 } + \frac { 1 } { 6 } + \frac { 1 } { 12 } + \frac { 1 } { 20 } + \frac { 1 } { 30 } \)
Erst muss ich ja die Brüche in der Klammer voneinander abziehen, ehe ich dann alles zusammen addiere. Dazu muss ich erst die beiden Brüche in der Klammer auf einen Nenner bringen um sie voneinander abziehen zu können. Dann, wenn ich alles zusammen habe, habe ich aber wieder 4 Brüche mit unterschiedlichen Nennern. Um die dann aber wieder zusammenaddieren zu können, müsste ich die ja wieder gleichnamig machen.
Nur wie komme ich in dem Fall auf den gemeinsamen Nenner? Bzw. wie ist die Lösung der Aufgabe?
Ich wäre wirklich sehr dankbar, wenn mir jemand helfen könnte.